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Abstract

We investigated Brownian motion, the random thermal movement of particles, in 0.7µm fluores-

cent polystyrene particles diluted in a fluid using video microscopy. By tracking particle trajectories

across multiple trials, we measured mean squared displacement (MSD) over time and verified the

expected linear relationship predicted by diffusion theory. From our data, we found an experimen-

tal diffusion constant of D = (1.68 ± 0.04) × 10−12m2

s , significantly higher than the theoretical

value of (6.23 ± 0.47)× 10−13 m2

s .
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I. INTRODUCTION

Robert Brown first observed Brownian motion in pollen particles in the 1820’s. Einstein

later quantified Brownian motion in 1905 [1]. He judged the random thermal movement

of fluid molecules responsible, asserting that they collide randomly into the larger pollen

particle—causing sporadic motion. Einstein argued that this motion was evidence of the

atomic nature of matter. Later, the 1926 Nobel Prize in physics was given to Perrin for

precisely measuring Brownian motion [1]. Brownian motion is used today as a probe of a

particle’s environment, where researchers work backwards from a larger particle’s motion to

deduce what is happening around it. It has also been used to examine motion in living cells

[1].

II. THEORY

A. Deriving the diffusion constant

In our experiment, we used a microscope and a CCD camera to observe the movement

of 0.7µm polystyrene particles in a fluid sample. In the following theory, we show how

we derive the diffusion constant of the liquid from the mean squared displacement of the

polystyrene particles. We first use a simple 1D model from statistical mechanics to explore

how particle diffusion changes with its environment’s properties. Our particles are subject

to random impulses that we shall call F (t) and a dissipative drag force from the fluid. Thus,

in one dimension,

m
d2x

dt2
= −6πaη

dx

dt
+ F (t) (1)

Here, the drag force is modelled by Stoke’s law where a is the particle radius and η is

the fluid viscosity. Our goal is to manipulate this equation to find an equation for the mean

squared displacement < x2 > as a function of time. To do this, our first technique is to

multiply the equation by x to find:

mx
d2x

dt2
= −6πaηx

dx

dt
+ xF (t) (2)

We can rearrange the second derivative to get:

mx
d2x

dt2
= m

d

dt
(x

dx

dt
)−mv2 = −6πaηx

dx

dt
+ xF (t) (3)
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We can use the equipartition theorem, 1
2
mv2 = 1

2
kT where k is Boltzmann’s constant to

remove our previous equation’s dependence on v2 which is much harder to measure than

temperature T . We can also take the average of our equation over time and since< xF (t) >=

0 because F (t) is a random force, we obtain:

m

2
<

d

dt
(x

dx

dt
) > −kT = −3πaη <

dx2

dt
> (4)

Rearranging terms, we find:

m

2
<

d

dt
(x

dx

dt
) > +3πaη <

dx2

dt
>= kT (5)

Using a substitution for < dx2

dt2
> and integrating, we obtain our final desired result:

< x2 >=
2kT t

6πaη
= 2Dt (6)

D = kT
6πaη

is our desired diffusion constant for the 1D model. In order to derive the mean

squared displacement of our particles, we approximate them as confined to 2 dimensions.

This approximation will be more justifiable to the reader after reading our methods. To

extend equation 6 to two dimensions, we can add a factor of 2 because the motion in each

direction is not correlated, and thus < r2 >=< x2 + y2 >=< x2 > + < y2 >= 4Dt for two

dimensions. An important quality of this equation is that the MSD plot of the Brownian

motion is linear in time t.

B. Calculating our diffusion constant

For our experiment, we can now estimate a value for D using the result of Equation 6

that D = kT
6πaη

. Using a room temperature of 293 ± 2K , estimating the fluid viscosity to be

water’s fluid viscosity of (1.0 ± 0.05)× 10−3 kg
ms

, and taking a, the radius of the polystyrene

particles, to be (0.35± 0.02)×10−6m, gives us a diffusion constant of (6.23± 0.47)×10−13 m2

s
.

III. EXPERIMENTAL METHODS

A. Sample

We first took prepared sample vials that held a solution with diluted 0.7µm polystyrene

particles and extracted a small amount of liquid with a Gilson W61244L micropipette. The
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sample was diluted with water 100X compared to the original solution. This was done so

the polystyrene particles would interact less, and the camera could track individual particles

more easily. We then placed one drop on a microscope slide in between two roughly 1 in

squares of Scotch tape roughly 3
4
in apart that act as spacers. We then placed the cover slip

flat and centered over the drop so that it was held by both pieces of tape. We used a small

drop that did not spread to the edges of the slide, reducing external forces. We then placed

the prepared slide under the microscope.

FIG. 1. Nikon Eclipse Ci optical microscope

with 10X eyepiece connected to CCD cam-

era visible at the top of the figure, and the

objective visible in the middle of the figure.

FIG. 2. Close up of Nikon Eclipse Ci optical

microscope sample stage.

B. Data Acquisition

We used a Nikon Eclipse Ci optical microscope (shown in Figure 1) to observe our pre-

pared sample. We used a UV light to make the particles easier to see (since they are

florescent and shine green under UV light) and viewed the sample through the 10X objec-

tive. We adjusted the stage in x and y translation and focus as well as possible. Then, we

switched to the 40X objective and used the fine focus to find a field of view of many jiggling

bright particles without clumps of unmoving particles.
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Once a good visual sample of moving particles was in focus under the microscope, we

switched the UV light to a bright white backlight and set the microscope to send the image

through a 10X eyepiece coupled to a CCD camera to the computer. We then used Matlab

with the runflir.m file to record videos of the particles moving, in which 1µm corresponded

to 7.5 ± 0.5 pixels in our digital images as determined using a stage micrometer. We set

the parameters for acquisition time, frames per second, and the file name to be 10 seconds,

20 fps, and trialx (where x is the number of trial) respectively. We then ran the program 3

times each for 2 different samples. In between each trial, we adjusted the microscope to a

different part of the drop.

C. Image Processing

Once we collected the 200 frames per trial, we had scripts to detect particle position by

their pixel and use our pixel to µm conversion ratio mentioned before to find the real x, y

location of each particle after improving image contrast. Particles were detected if they met

a certain brightness and size threshold, and all non-filtered identified particles of a sample

frame can be seen as a pink dot in Figure 3.

FIG. 3. A single frame of a sample where

pink dots represent detected particles before

filtering out clusters.

FIG. 4. A single frame of a sample where

pink dots represent detected particles after

filtering out clusters.

Particles were then tracked across the 200 frames by identifying particles that were in

similar locations in neighboring frames. Certain particles were filtered out if they were in

clusters as it would be nontrivial to determine their locations in future frames because any
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one particle nearby in a future frame could reasonably be any of those in the cluster in

the current frame. The remaining non-filtered particles can be seen in Figure 4. Note that

clusters are now identified by a single pink dot.

Almost all of the particles drifted in and out of focus throughout our 200 frames. Only

particles that were tracked for a minimum number of 150 frames were used in the final data

analysis, and it can be seen in Figure 5 that the number of tracked particles rapidly drops

off with how long they stayed in focus. Particles that were not moving were also excluded

from data analysis. These particles were likely adhered to the slide or the tape, so they did

not exhibit Brownian motion like the other particles.

FIG. 5. Number of particle trajectories versus zeroed time. This figure was created after filtering

for only particles that were in focus at least 7.5 seconds.

IV. RESULTS AND ANALYSIS

The trajectories of a single particle and all non-filtered particles in a sample trial can

be seen in Figures 6 and 7 respectively. It can be seen that each particular particle path

appears to be effectively random with any pattern being hard to identify. In Figure 7, some

curves are on top of each other because particles could occupy the same space at different

times.
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FIG. 6. The trajectory of a single sample

particle.

FIG. 7. The trajectories of all non-filtered

particles in a trial. Particle number is an

arbitrary tracking number used to identify

different particles in our software.

Similarly, plotting the mean squared displacement of a single particle over time is illumi-

nating and appears very sporadic. This is shown in Figure 8. This particle stayed in focus for

almost all of the 200 frames, and its mean squared displacement is simply its displacement

from its location in the initial frame squared.

FIG. 8. The mean squared displacement plotted against time for a single sample particle in a trial.

However, when we find the mean squared displacement of all particles across all 12 of

our trials over time, the relationship shows a very linear pattern for the first 7.5 seconds

as shown in Figure 9. After this point, the data is unclear, this could be due to a range
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of factors, perhaps including the rapidly decreasing amount of data at this point or the

possibility that our two dimensional assumption begins to break down.

This plot however, allows us to find a linear relationship between MSD and time, and

thus, from the theory, we should then be able to find our diffusion constant by simply

dividing the slope by four. We found the slope by finding a best fit line for the first 100

data. A slope of 6.73 ± 0.15µm2

s
was measured from the first 100 frames. So, we find that

our experimental diffusion constant, D = (1.68 ± 0.04)× 10−12m2

s
.

This is very different than our theoretically found diffusion constant of (6.23 ± 0.47) ×

10−13 m2

s
.

FIG. 9. The mean squared displacement of particles across all trials that were in focus for more

than 7.5 seconds plotted against time. A best fit line is fitted to the first 100 data points and is

shown. It has a slope of 6.73± 0.15µm2

s

V. CONCLUSIONS

The relationship between mean squared displacement and time of particles due to Brow-

nian motion has historically been shown to be linear. We used microscope and CCD camera

to investigate the movement of polystyrene particles in a fluid sample and found an experi-

mental relationship between MSD and time. Our results reinforced that the relationship is

linear, but our calculated diffusion constant varied significantly from our theoretical value.

This error could come from a variety of sources including water currents in the sample or

errors in image processing. This experiment could be repeated with other fluid samples with
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different viscosities to explore if the linear relationship is maintained in different fluids. The

data could also be reprocessed or acquired with alternative methods to determine if there is

an error in our data acquisition or image processing. Tracking the particles in 3 dimensions

would be a further improvement to ensure that our theory extends to the 3 dimensional

reality in which we live, though the setup would likely be significantly more complex.

[1] Tracking Brownian motion through video microscopy–Advanced Laboratory, Physics

Department, Swarthmore College, unpublished (2024).
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